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ABSTRACT 

The Relative Trace Formula is a tool for establishing the Langlands 
functoriality principle. For a given reductive group G and involution 0 on 
it we construct a new group G', formulate the Relative Trace 
Formula for groups G and G' and take some steps towards the proof 
of this formula. 

1. Introduction 

Let F be a number  field and G a reductive simple group which is either split 

over F ,  or obtained by restriction of scalars from a split group G1 over E ,  where 

E D F is a quadrat ic  extension of fields. 

We define a s p l i t t i n g  f ield of G to be F in the first case and E in the second 

case. In the first case G~ = G |  -P is a simple group, and in the second case 

G~ = G l p  x GI,~. 

Let 0 be an involution of G also defined over F .  Then 0 induces an involution 

on Gp.  If  G p  is not  simple, we consider those involutions 0 tha t  interchange 

two copies of GI,~, i.e., O(Gl~ x {el) = {el x G1/~. This actually means tha t  0 

involves a Galois action and we call this 0 Ga lo i s .  If  0 is Galois then the Galois 

group G a l ( E / F )  of a splitting field E over F acts on the group G. We denote 

the act ion of tile nontrivial element of Gal (E /F)  by an overbar. 

We assume tha t  there exists a pair (B, T) of Borel subgroup and torus of G 

bo th  defined over F which is 0-invariant. 
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One defines S = {x 6 G : xO(x) = 1}. Then the group G acts on S by 

g.s = gsO(g) -1. We denote by {E} the system of representatives of orbits, by Se 

the orbit corresponding to ~, and by He the stabilizer of~. Obviously Se = G/He.  

Denote by H the group of fixed points of involution 0. 

By GA we denote the group G over the adeles. 

First of all let us give an important definition of a dist inguished representa- 

tion which we shall need in order to formulate the main conjecture. 

Definition: A cuspidal representation (r, GA, V~) is called distinguished with 

respect to the subgroup R of G if there exists qo 6 V~ such that 

R qo(h) dh r O. 
F " , R ,  

CONJECTURE: Automorphic generic cuspidal representations of G distinguished 

with respect to one of He can be characterized as those that come from automor- 

phic generic cuspidal representations of some reductive group G' under the map 

induced by the homomorphism LG' ~-+ LG according to the Langlands functori- 

ality principle. 

One way to prove this conjecture is to use the Relative Trace Formula of 

Jacquet. This is an identity of the form 

IN IN K / ' ( n l ' n 2 ) r  dn" = 
'~ ". N'~ ~' .. ~ ',, 

-N. fH,, -H,, Kl ' (n ' he ) r  

Here, N and N' are the maximal unipotent subgroups of G and G ' respectively, r 

and r are nondegenerate characters of N and N ~ respectively, and K h and KI, 
are the kernels of the operators corresponding to the functions fe and f '  which 

are smooth and of compact support on GA and G'A respectively. The proof of 

the Relative Trace Formula consists of three steps. 

STEP 1: To represent each side of the identity as a sum of orbital integrals; 

namely, to rewrite it in the form 

E E 
7'6N'\G'/N' e 76NkG/H~ 

De~nition: The double coset 7 is called C-admissible if the corresponding 

orbital integral I7( % r does not vanish identically. 



Vol. 121, 2001 RELATIVE TRACE FORMULA 127 

STEP 2: To match the admissible double cosets 3'~ ~ 3' on both sides in a 

natural way. 

Every admissible integral I~(fE, r and Er(f' , r is a product of local integrals, 

as will be shown below. Hence it remains to prove that certain local integrals are 

equal. 

STEP 3: Fundamental Lemma. For every f~ there is fe,, and vice versa such 

that  

I~v(f~v, r : I~v(ftv, r 

Moreover, this local matching is compatible with the map between the Hecke 

algebras of G ~ and G. This map is dual to the homomorphism of L-groups 

L ! r: G v ~-~ LGL,. 

In particular, if v is outside of the finite "bad" set of primes and ]~ belongs to 

the Hecke algebra of G~, the ] ~  in the Hecke algebra of G defined by 

(f'~,)s(t) = (hv)S(r(t))  

will be a matching function to f~. Here f s  denotes the Satake transform of the 

function f .  The identity is well-defined since for almost all v the representative 

6~, belongs to the orbit of 1. 

Step 3 is usually the most difficult step. 

In the present work we define the group G ~ and do steps one and two. The 

fundamental lemma is formulated explicitly. 

Tr{P, OREM: Under certain conditions on 0 the admissible cosets of the group G 

match the admissible cosets of the group G ~, where G~F is a subgroup of GF 

defined by 

Here, n~oa is a canonical representative of the longest element of the Weyl group 

of G and 0 D~ is the involution 0 conjugated by an element De of the torus 

depending on 0 and r 

Remark: Below we define for every 0 and r an element ze,r of the center ZG. 

The condition in the theorem is that this ze,r = 1. Moreover, we show that for 

an involution not involving the Galois action this condition is equivalent to the 

existence of admissible cosets. 
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2. E x a m p l e s  
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2.1. Let E D F be a quadratic extension of the number field and G = GL.  (E) 

is the group obtained by the restriction of scalars from the group G L , ( F ) .  The 

involution 0 on G is defined by O(g) -- ~. Then G' = U,~(E/F) is a unitary group 

and H = GLn(F) .  The corresponding map of L-groups is defined by 

r: GL.(C) )~ Gal(E/F) ~ GL.(C) x GLn(C) ~ Gal(E/F) 
(g, ~) ~ (g, ~g-1, ~). 

This case is discussed in [F]. 

2.2. Let G be as above and the involution be defined by 

t~-I - 1  

where n~a is as in the theorem. Then H = U,~(E/F) and G' = G L , ( F ) .  This is 

the Base Change case, dual to the case 2.1. The corresponding map of L-groups 

is defined by 

r: GL,~(C) x Gal(E/F) ~ GLn(C) x GLn(C) x Gal(E/F) 

(g, ~) ~ (g, g, ~). 

In this case the Relative Trace Formula and the conjecture was proved for n -- 2, 3 

by Jacquet and Ye [JY1],[JY2], [J1]. See also [JLR]. 

2.3. Let GE be the group obtained by the restriction of scalars from a split 

group GF. The involution is defined by O(g) = ~. Then G' is either the group 

GF or the quasi-split outer form of GF according as - 1  lies in the Weyl group 

of GF or not. This case is extremely important because there are some ways for 

proving the fundamental lemma in this case. 

2.4. Let G = GL2n(F) and O(g) = j t g - l j - 1 ,  the involution defining a sym- 

plectic group. In this case there are no admissible cosets, i.e., the contribution 

of the RI-IS of the Relative Trace Formula is identically zero. Considering the 

spectral side one concludes that there are no cuspidal generic representations of 

GL2n distinguished with respect to symplectic group. Jacquet and Rallis in [JR] 

considered a slightly different Relative Trace Formula, namely, the character r 

was taken degenerate. Then there exist admissible cosets and they match the 

admissible cosets of G' -- GLn. They also prove the fundamental lemma. 
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2.5. G = GL,*(F) and 0(g) = Atg-IA -t, the involution defining the orthogo- 

nal group. Then H = SO,, and G~, = GL,,(F). In this case, G t over the adeles 

is conjecturally the double cover of GL,, and the result probably generalizes the 

work of Waldspurger. Namely, it is known that automorphic representations of 

GL2 distinguished with respect to an orthogonal group correspond to automor- 

phic representations of the double cover of GL2. Moreover, an orthogonal group 

in this case can be taken to be split. See [J2], [J3]. 

3. Notat ions  

3.1. NOTATIONS ON THE STRUCTURE OF THE GROUP. Throughout the paper 

all data related to the left hand side of the Relative Trace Formula will be marked 

with a prime. For the group G we denote by B the Borel subgroup of G which is 

0-stable. Then B = NT, where N is the maximal unipotefit radical of B and T 

is the maximal torus. We denote by R(G, T) the set of roots with respect to the 

maximal torus T and by A the set of simple roots. Obviously 0 acts on the set 

of roots and this action preserves the set of simple roots and the set of positive 

roots. Similarly, 0 acts on the Weyl group of G. All induced actions we also 

denote by 0. 

Let us fix the one parameter additive subgroups xa of G for every root c~ E 

R(G, T). This is an isomorphism of the additive group of the splitting field of G 

onto a closed subgroup Us of G, normalized by T such that 

= 

For every w E W = Na(T)/T one can choose its representative n~ �9 G such 

that for every a E R(G, T) one has 

- 1  = 

We shall always work with such representatives and call them s tandard.  

Moreover, we define the action Oa on the additive group of the splitting field 

of G for every simple root a by 

= x e  

These actions define additive automorphisms of the splitting field. 

By transpose we shall always mean the antiautomorphism of the group defined 
by txa(r = x-a(r 
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3.2. THE CHARACTERS r AND r There is a connection between the charac- 

ters Ct and r The character r  is nondegenerate. That  means 

r  (al>I>0 Zoo(Ca)) -- T (aissimple Ca ) E  

where r is a fixed additive character of F. 

If 0 does not involve Galois action then we define 

x c~>O / a is simple 

If O involves Galois action then we define two inequivalent characters r  and 

r  on N as follows: 

\ or>0 : a is simple 

and 

is simple 

where r is a fixed element of the splitting field E such that r = -r 

When the involution 0 is Galois and we put the character r  or r  on the 

right hand side, we refer to the admissible orbits of the right hand side, as r  

admissible orbits or r orbits respectively, 

3.3. DEFINITION OF De AND Z0,r The involution may or may not involve 

Galois action. In case it does we call the involution Galois and then 0~(r = a~r 

and if it does not then 0~(r = a~r for some constants am. 

If 0 is not Galois then we define 

D E T: o~(D) = - l / ao .a  Va E A.  

Trivial computations show that the involution 0 D defined by 

OD(g) = DO(g)D -1 

satisfies 0aD(r = - r  

If 0 is Galois then we define 

D+ E T: a (D)  = ~:l/ao.,~ Va E A.  
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Similarly, we define involutions 8 D• that satisfy 

for every simple root a. Next we define 

De = D~= 

if 0 is Galois and 

for r = r177 

De = D  

131 

if 0 is not Galois. Note that such De satisfies Dr E Zo, hence 8 D,~ is really 

an involution. We define for any 0 

zo,~ = (Dr162 -1. 

Note that  De is defined up to center, hence z0,r E Zc/{zO(z)}. 

3.4. OTHER. If a and fl are roots such that  a # - ~  then 

i~+3ct is & root 

Here In, b] denotes the commutator a-lb-lab. In the present work we use this 

expression only in the case where the unique linear combination of roots a and [3 

which is a root is a+fl. In this case, considering the expression 0([x#(~) ,  x~(~a)]) 

one sees that  

We shall use this identity later. 

4. P r o o f  of  Step  1 

Let us write both sides as sums of orbital integrals. We have 

LHS = /N /N ~ f(nl-17'n2)r  dn2 
'~ -. N ', k -. N i .r e O, ~ 

\ N  i \N~ 
E 

I n t u 6NF\GFIN F 

'TI ",-1 Irf~ n " ~[ lnl) 7 2 2) 

z II 
t I t l 

"y 6 N F \ G F / N  F O~t FXN[ x1V ~ 

t --1 r ((mini) m2n2) dnldn2 

/ '  (nl-17' n2)r (nl-ln2) dnl dn2 
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where O.y, v = {(nl,n2) E NF x NF [ nx-tT'n2 = 3/}. Thus 

LHS = ~ /0  N' N' f'(nx-17'n~)r dnl dn2 
7 ' E N ~ \ G ' F / N  ~ "y' A\ A x A 

x fo,,F\o," tb'(vl-Xv2) dr1 dv2, 

where 07, A = {(nl, n2) �9 NA x NA [ nt-17 'n2 = 7'}. 

Similar computations for the right hand side show 

R H S =  Z E s g n fe(n-17he)r 
e "TeNF\GF/HEF ~ , \  AX eA 

x f r dn, 
Jo ~F\O~  ̂

where O.~A = {(n, h~) �9 NA • H~A I n-17h~ = 7}. 

5. The definition of  admissible cosets revisited 

Now we can write down the equivalent definition of admissibility of orbits, which 

will be used in our construction. 

Definition: The double coset on the left hand side represented by 7 is called 

admissible if 

o r dr1 dv2 r O. 
.y' F\O.r 

Similarly, the double coset on the right hand side represented by 7 is called 

admissible if 

o r dn r O. 
F\O~A 

This is obviously equivalent to the triviality of characters r and ~b' on the 

corresponding sets O r and Or,. 

6. Desc r ip t i on  of  the representative of  orbi ts  

6.1. LEFT HAND SIDE. By the Bruhat decomposition G' = B'W'B', where B' 

is a Borel subgroup and W' = {n~, I w E N~(T')/T'} is the finite set of the 

fixed representatives of the Weyl group in G'. Hence N'\G'/N'  = WIT ', where 
T' c G' is a maximal torus. Thus we may assume 7' to be of the form nw,t' with 

w' E W', nw,t' E G'. 
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6.2. RIGHT HAND SIDE. According to the result of Springer the double cosets 

N \ G / H ~  correspond via xEO(x) -~ to the orbits of N on S~. Springer in [S] 

proved that  every such orbit intersects the normalizer of the torus and it is easy 

to see that  the intersection is one point. In order to use the result of Springer 

one needs the existence of a 0-invariant pair (B, T) in G, hence the condition on 

0 is necessary. 

Thus we may assume Y 6 N \ G / H e  to be of the form x~,t,E where 

x~v, t~O(xw, t ) - l=tnw and t nwO( tnw)=l .  

Let us introduce some notations: for every J C A (the set of all simple roots) 

we denote by R j  the root system with basis J, M j  the corresponding Levi 

subgroup, W j  the corresponding Weyl group and by w j  the longest element in 

Wj.  In particular, wz~ is the longest element in W. 

7. D e s c r i p t i o n  o f  t h e  admiss ib le  orbits 

7.1.  LEFT HAND SIDE. 

PROPOSITION 1: The element 7' = n~,t' represents the admissible orbit in G' iff 

(a) W' ---- wA, w j , ,  for some J'  C A', 

(b) t' �9 ZMj, the center of M j,. 

7.2. RIGHT HAND SIDE. We noted above that double cosets in [-Je N \ G / H ~  are 

parametrized by elements of S n N c ( T ) .  We call an element tn~ �9 S admiss ib le  

if the corresponding double coset is admissible. 

PROPOSITION 2: An element tnw �9 NG(T) is admissible iff 

(a) tn~O(tn~) = 1, i.e., tn~ �9 S, 

(b) w = WAWj and TO(w) = 1, for some J C A, 

(c) t �9 ZMo~j~, the center of Mo(j), where t = tn~D,~-ln,~-l ,  

(d) oD*(g) = zo,• n ~ t g - l n w A  -1, where g = n~O(t). 

Note that if z0,~ = 1, the element g in Proposition 2, (d) belongs to the group 

G' defined in the Theorem. 

8. Proof  of  Proposit ion 1 

As before 

O~, A = { ( n t , n 2 )  �9 N'A x N'A I n l - ln~ , t 'n~  = n,~,t'} 
d . t - - i  - - I "  

= {(n, ,n2) �9 N'A x N'A I nl = nw,~ n2~ n~, 1. 
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Thus  nw,tln2tl-Zn~,-I and n2 E NIA, hence n2 �9 N'A Nnw,-1N'Anw,.  So 

fo , ,  r  dr1 dr2 
F \ O ? I  A 

/ / - -1 t - - 1  = r (n~o,t n t nw,-Zn) dn 
N~on~o , - 1 N ,an~,  

fF  r (n~,t ,-1 -1 = H ' ' x a , ( - ~ a , ) t  nw, xc,,((a,))d(a, 
o,>o \A 

u.l.al>O 

= H [ r 
o,>o JF\A 

We then see tha t  for every root  a '  such that  w ' . a '  > 0 one has w ' . a '  also is 

simple. Note tha t  this exactly means tha t  w I = WA,Wj, where J '  is a subset 

of simple roots  e such tha t  w'.a' is simple. Indeed, any element w of the Weyl 

group is uniquely determined by the set of roots tha t  w send to negative ones. 

Obviously the element WA,Wj, sends any root  a which is not in J '  to a negative 

root  and any root  a in J '  to a simple root. Moreover, for every cd �9 J '  one has 

a ' ( t ' )  = 1, i.e., t '  �9 ZMj,. The proposit ion follows. II 

9. Proof of Proposition 2 

Recall that admissibility of 3' representing the coset means that if (n, he) �9 O r 

then r = I. One has 

(n, he) �9 0 r r 3"-1n3" �9 He r 3"eO(3")-10(n)(TEO('Y)-l) -1 = n. 

For 3' = xw,t one has 

3"~0(3") -1 = tn~o. 

So admissibility means 

tnwO(n)nw-lt -1 = n ~ r  = 1. 

LEMMA 2.1: I f  tn~oO(tnw) ---- 1 and a is a simple root such that  ~ = w.8.a > O, 

then for every ~(~ �9 F the element 

where ~Z = fl(t)O~(~) and r = �89 r  satisfies 

tnwO(n)nw-lt -1 = n. 
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Remark: If a +/~ is not a root we put x~+/~(~) = 1. 

Now let us prove the proposition assuming Lemma 2.1. (a) It  is obvious since 

tnw E S by our choice. (b) Assume that  there is a simple root a such that  

w.O.a > 0 and is not simple. Then considering n as in Lemma 2.1 one sees that  

the admissibility condition does not hold. Hence, for every a simple we have 

either w.a  is also simple or w.a  < 0. This means that  w is of the requested 

form. (c), (d) Let us take a E /9(J), i.e., w.O.a is a simple root, and consider 

n = xa(~)x~(~)x~,+13(~ ) as in Lemma 2.1. Then 

~(t)o~(~B) = r ~( t )o~(~)  = ~. 

Assume that  O involves Galois action. In this case, if 7 is r then for 

n as above one has r  (n) = 1 r ff~ + ~# + ~ + ~ = 0. This means 

~(t)a~r + ~ + ~(t).~r + ~ = o 

(a(t)a# + 1)~ B = - ( a ( t ) a~  + 1)fla. 

Since ~/~ r const we have a(t) = - 1 / a a  Va ~ O(J). 

Similarly, if 3' is r then we have a(t)  = 1/aa Va ~ O(J). 

Now assume that  0 does not involve Galois action. In this case, i f7  is admissible 

then for n as above one has r  = 1 r (a + ~ = 0. Hence a(t)  = - 1 / a ~  V a  

o(J). 
Summing all the above we conclude that  if tnw is C-admissible then for such 

a case one has 

tn~O(tnw) = 1 ~ tn,~O D'~ (tn,~) = zo,r 

where t = tn~Dr -~ and 0 ~ is a new involution defined by 

0 ~ (g) = Dr162 -1. 

Thus 
~([) = a ( tnwD~- ln ,o  -1) = ( - 1 / a w . e . a ) ( w - l . a ( D r  

= (-1/aw.o.a)(-aw.o.a)  --- 1 Va e o(g). 

This means that  O De (t) belongs to the center of M j ,  in particular it commutes 

with n~: .  One has 

--1 --1 tn~OD~(tn~) = z0,r r [n~OD*(t)n,o -1 = zo,r n~ r 

[nwa nwjO De ( t )nw~- lnw a-1  = Ze,r (nw)- lnw-1  r 

[nwzxoDr (~)nwz x -1  -1  --1 = z e , r  n ~  

0~(~0(~)) - 1  - - 1  = ze,,~,n~ n~aO(t) n~L, -1 r 
t --1 OD~(~O(~))= z o , r  (,~O(t3) n~ .  -1 
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The proposition follows. II 

It remained to prove Lemma 2.1. One has 

tnwO(n)n~,- l t  -1 =xa(3(t)O~,((~) ) zo(c,(t)Oa(~a) ) 

zo+e((c- +/~)(t) 5-~zoo+B(~o~)). 

CLAIM 1: O n e  has  ffa = c'(t)O3(r r (B ---/~(t)Oa(ffa). 

CLAXM 2: One has O , ~ + a ( ~ )  = -O,,(r Ot~(~a). 

Assume that the claims are proved. Then 

tn~oO(n)n~,-lt -1 = x a ( r 1 6 2  f-~-~-(c. + 3)( t )0~(r162 

as required. 

Proof  o f  Claim 1: 

Hence 

as required. 

Proof  o f  Claim 2: 

Denote as before r = 3(t)O, , (G).  Then 

x ~ ( ~ )  = tn ,~O(tn,o)x~(G)O(tn~)- l ( tn ,o)  -1 

= tn~O(xo(3 ( t )O ,~ (~ ) ) )nw- l t  -1 

= x,(c~(t)Oo(3(t)O,,(G))) .  

~,, = c,(t)Oo(3Ct)Oo(r = c.(t)Ot~(r 

lsr. J. Math. 

Since tn,oO(tn~) = 1 one has 

tn~,O(tn~,O(n)n,~- l t -1)n~-l t  -1 = n. 

We computed before 

nl = tnwO(n)n ,o- l t  -1 = x/3(~) x~(~,) xa+t~((c. + 3)(t)0~+~(~)) 

= . ~ ( ~ )  .~ (~ )  x~+~(c~,~G<~ + (c. + 3)(t)0~+~(O). 

Now repeating the procedure one has 

tn~,O( nl )n~o- lt - x = 

x~CG) z~(~e) x ~ + ~ ( c ~ , ~  + (c. +/~)(t)o~+~(c~,~or + Co- + 3)(t)o~+~(O). 
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Hence, since tnwO(nl)nw-l t  -1 = n, one has by comparing parameters  of x~+t~, 

=c~,~,~(~ + (c~ + ~)( t )o~+~(c~,o;~ + (c~ + ~)(t)o~+~(~)) 

= c ~ , ~ @  

+ c~.~,e.~(~ + Z)(t)oo(r162 + (~ + Z)(t)oo+~((~ + Z)(t)o~+~(;)) 

=(c~,~, + c~.~,~ .~)~ + (~ + ~)(t)o~+~((~ + ~)(t)oo+~(d)) = ~. 

Since this holds for any ( one concludes that  

CB,a : --CO.~,O.a. 

Recall that  we have seen in section 3 on notations the identity 

Hence Oa+~((a~)  = -Oa((~)0~(@) as required and the lemma is proved. 

10. T h e  matching 

Now we can state explicitly the theorem that  was stated first in the 

introduction. 

THEOREM: I f  ze,r = 1, there is a matching between admissible double cosets of 

G and G' and it is described by 

s 
Xw,t ~ '~w',t' 

where 
- d e f  - 1  - 1  

nwO(t)=n,~O(tnwDr nw ) = nw,t', 

with notations as above. 

Proof: First of aLl, let us describe the structure of the group G'.  There is a map 

~- : A ~-~ A I defined by 

(i) xr(o)(()  -- X~(() if O.a - - w a . a ,  

(ii) xr(~)(()  = xa(()x-~,~.o.a(() if a ~ -wa.O.a  and x~((),x_~,a.o.~(() 

commute,  

(iii) x~(~)(() = z ~ - ~ . e . ~ ( ( )  if a r --wA.O.a and x ~ ( ( ) , x - ~ . o . ~ ( r  do not 

commute. 

In all three cases, ( E F if 0 is not Galois and r E F '  ~_ F where F '  is the 

additive subgroup of E. 
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The  m a p  r is onto, i.e., each simple root  of G ~ is expressed in te rms  of s imple 

roots  of G as above. 

Consider the admissible coset of RHS represented by the element x~,t.  Then  

we know tha t  nw~(t') ~ G '  hence n,~t~(t) = n~,t', where t ~ ~ To,,  w ~ W ~. 

CLAIM: If xew,t IS RHS admissible, in particular if w = TaW j,  then n,,,t ~ is LHS 

admissible, w' = wa,  w~-(j). 

Proof of  Claim: One must  prove tha t  w ' . a '  is simple for every root (~' ff r (J )  

and negat ive otherwise. Moreover, a~(t ~) = 1 for all a ff r(J) .  Assume tha t  

a '  = v(o~). Then  

(,) n,,,t'xc,,(~)t'-in,~, -1 = xw,.(,,(a'(t')~). 

There  are 3 different cases: 

(i) a = -wa.O.a .  In this case x~,,(~) = x~( ( )  . Then 

(,) = = 

Hence one sees tha t  for a '  E r (J)  one has (~ E J ,  therefore w ' .~ '  is simple 

and (~(t') = 1. For a ~ J one has w'.(~ < 0. 

(ii) c~ :~ - w a . & a  and za(~),x-wa.e.a(~) commute .  In this case also x~,(~) = 

xc,(r ). Then  

(,) = e - '  

= e 

Hence one sees tha t  for ~ E T(J) one has ~ E J ,  therefore w .a  is s imple 

and a(8(t))  = 1. Note tha t  - w . w a . & a  = -wa .~ .w .~  = -we(j) .&c~. Hence 

for c~ E Y one has - w . w a . 8 . a  is also simple and the corresponding one 

pa ramet r i c  subgroups  commute .  Since the whole expression belongs to G ~ 

one has w a . 0 . a ( 0 ( h )  = 1. If  a '  ~t r ( J )  then w ' .~ '  is negative. 

(iii) r~ ~: - w a . ~ . a  and xa(~) ,  x-wa.e .a(~)  do not commute .  In this case xa, (4) = 

xa (~ )x_~a . e~ (~  ). The  proof  of the claim in this case is similar to the proof  

of (ii). 

So every RHS admissible coset corresponds to some LHS-admissible coset. 

Similarly, every LHS-admissible coset has a representat ive of the form nt~, t ~ and 

this e lement  lies in the normalizer  of the torus To.  Hence it is of the form 

nw0(t) for some w E W,t~ E To.  Then the element x,~,t, where t is obta ined  

from t as before, is RHS admissible. The  proof  is analogous to the proof  of  the 



Vol. 121, 2001 RELATIVE TRACE FORMULA 139 

claim. Hence there is a matching of the admissible double cosets on both  sides, 

as claimed. | 

11. W h e n  d o e s  zo,r = 1? 

11.1. First  of all, if the center of the group G is trivial, then z0,r is nccessarily 

equal to 1. For example, for G = SO2,,+1, G of type G2. 

11.2. THE BASE CHANGE CASE. This case has great importance,  namely, 

the case when GE is obtained by restriction of scalars from a split group GF , 

t~ -  . Then G ~ = GF. In this case one has D_ = 1 and hence O(g) = n,~A l n ~ , - 1  

z0,r = 1. 

11.3. THE DUAL CASE TO THE BASE CHANGE CASE. In this case G is as above 

and O(g) = ~. See example 2.3. Here one has D+ = 1 and hence z0,r = 1. 

11.4. THE CASE 0 IS NOT GALOIS. In this case we can completely describe 

the si tuat ion when G is a group of the classical type (A,~, B,~, Cn, Dn). 

PROPOSITION 3: Let G be a classical group and 0 is not Galois. Assume there 

exists 0 on G with zo,r ~ I. Then 

(a) G = GL2n, SL2n, SO2~, Sp2~. 

(b) There are no admissible orbits of G. 

The typical example is G = GL2n, H = Sp2n. See example 2.4. 

Proo~ (a) To prove this case we show that  for all other types of groups one has 

zo,r = 1. We do it case by case. There are two possibilities: 

(i) Assume 0 acts trivially on the Dynkin diagram of G. Then we show tha t  for 

G = SL2,~+1, SO2,,+l and all similitude groups like GLn, GSp2n and GSOn, 

one has zo,r = 1. 

(ii) Assume 0 acts nontrivially on the Dynkin diagram of G. Then we show 

tha t  for G = GL2,~+I,SL2n+I,GSO2n and SO2,~ one has zo,r = 1. 

Proof of (i): In this case 

oD*(g ) = E g E  -1, w h e r e a ( E ) = - I  for a n y a C  A. 

1. G = SL2n+I. Then De  = d i a g ( d l , . . . , d 2 n + l ) .  One has 

Dr = D~ = z -1 = diag(z, .  ,z) ,  0,r "" 



140 N. GUREVICH Isr. J. Math. 

where d 2 = z and z 2"+1 = 1. If  zo r 1 one has d 2'*+1 = - 1 .  Then  - /  

( d ld2""d2n+l )  2n+1 = - 1 .  But  dld2""d2,~+1 = 1. Contradict ion.  Hence 

zo,r = 1. 

2. G = SO2n+1. In this case the centcr of G is trivial. 

3. G is a similitude group. Assume Dq, = d iag (d l , . . . , d2n+l ) .  Then 

Dr162  = D~ ~ = Zo,q ,-1 = d i a g ( z , . . . , z ) .  Since there is no condition 

on the determinant ,  one has z -1 = zlO D~ (zl), where zl - d iag(dl , ,  dl).  0,r "' ,  

Proof  of  (ii): 1. G = GL2n+I ,SL2 ,+I .  In this case oD~(g) : n ~ t g - l n w ~ - - l .  

Assume D e  = d i a g ( d l , . . . ,  d2n+l). One has 

Dq, oD~(Dr d iag (d l , . ,  d,~+l,., d2,~-l)•  - l  -1 = ., ., . . . .  , d , + 1 , . . . , d ~  -1) 

- 1  = d i a g ( . . . , 1 ; . . . )  = z0,r 

Hence z0,r = 1. 

2. G = S O ~ , , G S O 2 , .  In this case oD~(g) : B t g - l B  -1, where B is some 

element in G. For G = SO2n assume De  = d i a g ( d l , . . . ,  dn, d ~ 1 , . . . ,  d~-l). Then  

Dq, oD*(Dq,) = d iag ( . . . ,  1, 1 , . . . )  = z0,r Hence z0,r = 1. The same argument  

works for G = GS()2,~. 

(b) First  prove the s ta tement  when 0 is such that  

oD,~(g) t -1  - 1  
= r~wz , g nwA" 

Assume there is an admissible coset represented by tnw. Then from the proof  of 

Proposi t ion 2 one has 

~n~ O D~ (~)n~- ln~OD~ (n~) = zo,~ 
t - I  t - I  - 1  nw~nw:nw~ nw~ nwsnwa = zo,r r zo,r = 1. 

Contradict ion.  Thus we have proved the s ta tement  for groups Sp2,,  S04n if 0 

acts trivially on the Dynkin diagram and for all groups if 0 acts nontrivially on 

it. So we must  check the s ta tement  for the groups G = SL2n, SO4n+2 and 0 acts 

trivially on the Dynkin  diagram. I t  is possible to do it directly, carefully checking 

different cases of J .  We omit  here the details but  let us illustrate the point with 

one example. Consider the group SL4 and an involution 0 on it such that  0 acts 

trivially on the Dynkin diagram of SL4. Then 

O De -:- E9  E - l ,  where a ( E )  : - 1  for any a 6 A. 

Denote the simple roots of SL4 by a l , a 2  and aa. Assume that  there is an 

admissible orbit, say tnw. Then by Proposi t ion 2, w = wow:  for some J E A, 
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tnwO D~' (tnw) = ze,r and t E ZM~. Our aim is to prove that ze,r is equivalent to 

1. Note that  J should be symmetric in a sense that w j  = WoWjWo. Consider for 

example J = {al ,  a3}. Then t = diag(t, t, t -1, ~-1). It is easy to check that  then 

zo,r = 1. The case J = {a2} is treated similarly. Note that  the type of SL4 is 

the same as of SO6, so we have actually illustrated the point for both cases SL2n 

and SO4n+2. 1 

11.5. THE CASE ~ IS GALOIS. This case is more complicated. We cannot 

completely characterize all cases when ze,r = 1. Note that when zo,r ~ 1 there 

are still admissible cosets, but they do not match naturally to admissible double 

cosets of G'. We emphasize that we can choose r such that zs,r = 1 in many 

important cases, like Base Change and its dual. 
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